Mecanum-Wheeled Vehicle Base

Dan Fisher
in partial fulfillment of
ETLS 789 Simulation and Visualization of Dynamic Systems
University of St. Thomas
Dr. Michael Hennessey
Fall 2014

Due December 18, 2014

Abstract

Mecanum wheels offer a means to implement omni-directional translational motion in a vehicle platform. As the wheel rotates, rollers around its circumference create a force directed at an angle relative to the plane of rotation. Various combinations of wheel rotational velocities can provide a net force in any direction. This provides enhanced maneuverability in close quarters, but is often limited to smoother surfaces as the wheels require many moving rollers that can become easily obstructed by debris. Applications of this model run from small hobby kits up to heavy duty industrial vehicles. This project presents the simulation of a typical four mecanumwheeled vehicle platform using MATLAB and Simulink. All modes of vehicle motion are simulated and animated using frame-by-frame capture of a 3D vehicle model in Solidworks.

System Equations

The system equations presented here are the work of Lin \& Shih [1], with modifications as indicated.

Mecanum Wheel Parameters

Each wheel is mounted on a vehicle chassis with a local robot frame of reference $\{R\}: X_{\mathrm{R}} Y_{\mathrm{R}} Z_{\mathrm{R}}$ with the origin at the geometric center G and the wheel's center at A.

Figure 1. Parameters of a mecanum wheel [1]

The key parameters for each wheel are α the angle of $G A$ relative to the X_{R} axis, β the angle of the wheel's axle relative to $G A$, and γ the angle of the rollers' axles relative to the wheel's plane of rotation. Note that these parameters vary for each wheel on the vehicle.

The wheel's angular velocity $\dot{\varphi}$ is defined positively for clockwise (CW) rotation looking outward from the vehicle base.

Vehicle Base Configuration

Figure 2 shows the vehicle base as viewed from above. The rollers shown are those touching the ground on the bottom of the wheel, which form a diamond pattern. When viewing an actual mecanum-wheeled vehicle from above as in Figure 3, the visible rollers on top of the wheel form an "X" shape. While the wheel parameters are in the local robot frame $\{R\}$, the inertial laboratory frame $\{I\}: X_{\mathrm{I}} Y_{\mathrm{I}} Y_{\mathrm{I}}$ will provide the final output coordinates of the system. $2 a$ is the vehicle's width from wheel center to wheel center, while $2 b$ is similarly the vehicle's length. l is the distance from the geometric center G to the wheel center A.

Figure 2. Vehicle base configuration as viewed from above. Rollers shown are those that touch the ground. [1]

Figure 3. 4WD 100 mm Mecanum Wheel Learning Kit available from nexusrobot.com. Note the typical " X " shape formed by the rollers visible on the top of the wheels.

The wheel parameters used in this project are given in Table 1. It appears that Lin \& Shih chose γ_{1} values corresponding to a configuration where the rollers contacting the floor make an " X " pattern, reversed from the typical configuration. When their equations were simulated directly, the vehicle's translation back and forth along the X_{I} axis was reversed from what was expected. In order to get sensible behavior from the model, the signs of the γ_{i} values needed to be adjusted. The model implemented in this project uses the typical arrangement, which means the sign of each γ_{1} is opposite of that given by Lin \& Shih.

Table 1. Mecanum Wheel Parameter Values (γ_{i} signs reversed, compared to Lin \& Shih)

Wheel	α_{i}	β_{i}	γ_{i}
1	$\tan ^{-1}(b / a)$	$-\tan ^{-1}(b / a)$	$-(\pi / 2+\pi / 4)$
2	$\pi-\tan ^{-1}(b / a)$	$\tan ^{-1}(b / a)$	$(\pi / 2+\pi / 4)$
3	$\pi+\tan ^{-1}(b / a)$	$-\tan ^{-1}(b / a)$	$-(\pi / 2+\pi / 4)$
4	$2 \pi-\tan ^{-1}(b / a)$	$\tan ^{-1}(b / a)$	$(\pi / 2+\pi / 4)$

System Coordinates and Inputs

Consider each mecanum wheel with mass $m_{\mathrm{wi}}=m_{\mathrm{w}}$ and moment of inertia $I_{\mathrm{wi}}=I_{\mathrm{w}}$. Also, the vehicle base has mass m_{b} and moment of inertia I_{b} about the $Z_{\mathrm{R}}{ }^{\prime}$ axis. Figure 4 shows the system state variables $\boldsymbol{q}=\left[\begin{array}{lll}x_{I} & y_{I} & \theta\end{array}\right]^{\mathrm{T}}$ in inertial laboratory frame $\{I\}$ and input torques $\boldsymbol{\tau}=$ $\left[\begin{array}{cccc}\tau_{1} & \tau_{2} & \tau_{3} & \tau_{4}\end{array}\right]^{\mathrm{T}}$ acting on each wheel. Torques are defined positively for CW torques looking outward from the vehicle base. In general, the vehicle base should be well balanced with the center of mass near the geometric center G. However, the model is generalized for bases where the center of mass G^{\prime} is offset from G by distances d_{1} and d_{2}. The contact friction forces between each mecanum wheel and the floor are $\boldsymbol{f}=\left[\begin{array}{llll}f_{1} & f_{2} & f_{3} & f_{4}\end{array}\right]^{\mathrm{T}}$.

Figure 4. System coordinates with input torques defined positively for clockwise torques looking outward from the vehicle base

Equations

The derivation of the system equations is beyond the scope of this project to show. Lin \& Shih analyze the kinematics of the robot base assuming no wheel slippage parallel to the roller axes. The inverse kinematic equations are given as:

$$
\left[\begin{array}{c}
\dot{\varphi}_{1} \tag{1}\\
\dot{\varphi}_{2} \\
\dot{\varphi}_{3} \\
\dot{\varphi}_{4}
\end{array}\right]=-\left(\frac{\sqrt{2}}{r}\right)\left[\begin{array}{ccc}
-\sqrt{2} / 2 & \sqrt{2} / 2 & l \sin (\pi / 4+\alpha) \\
-\sqrt{2} / 2 & -\sqrt{2} / 2 & l \sin (\pi / 4+\alpha) \\
\sqrt{2} / 2 & -\sqrt{2} / 2 & l \sin (\pi / 4+\alpha) \\
\sqrt{2} / 2 & \sqrt{2} / 2 & l \sin (\pi / 4+\alpha)
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{y}_{I} \\
\dot{\theta}
\end{array}\right]
$$

where $\alpha=\tan ^{-1}(b / a)$. These will be used to find the direction, or sign, of each wheel's rotation during the simulation. Note that Equation (1) is modified from Lin \& Shih due to the reversed $+/-$ signs of γ_{1}.

The dynamics are then analyzed using Lagrange's equations. Final system equations are as follows (matrices \boldsymbol{B} and \boldsymbol{M} modified from Lin \& Shih):

$$
\begin{equation*}
\boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{f}=\frac{1}{r} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\tau} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \boldsymbol{q}=\left[\begin{array}{lll}
x_{I} & y_{I} & \theta
\end{array}\right]^{\mathrm{T}} \\
& \boldsymbol{\tau}=\left[\begin{array}{llll}
\tau_{1} & \tau_{2} & \tau_{3} & \tau_{4}
\end{array}\right]^{\mathrm{T}} \\
& \boldsymbol{f}=\left[\begin{array}{llll}
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}\right]^{\mathrm{T}} \\
& \boldsymbol{S}=\operatorname{diag}\left[\operatorname{sgn}\left(\dot{\varphi}_{1}\right) \quad \operatorname{sgn}\left(\dot{\varphi}_{2}\right) \quad \operatorname{sgn}\left(\dot{\varphi}_{3}\right) \quad \operatorname{sgn}\left(\dot{\varphi}_{4}\right)\right] \\
& \boldsymbol{M}=\left[m_{i j}\right]_{3 \times 3} \\
& m_{11}=m_{22}=m_{b}+4\left(m_{w}+\frac{I_{w}}{r^{2}}\right) \\
& m_{12}=m_{21}=0 \\
& m_{13}=m_{31}=m_{b}\left(d_{1} \sin \theta+d_{2} \cos \theta\right) \\
& m_{23}=m_{32}=m_{b}\left(-d_{1} \cos \theta+d_{2} \sin \theta\right) \\
& m_{33}=m_{b}\left(d_{1}^{2}+d_{2}^{2}\right)+I_{b}+8\left(m_{w}+\frac{1}{r^{2}}\right) l^{2} \sin ^{2}(\pi / 4+\alpha) \\
& \boldsymbol{C}=\left[\begin{array}{ccc}
0 & 0 & m_{b} \dot{\theta}\left(d_{1} \cos \theta-d_{2} \sin \theta\right) \\
0 & 0 & m_{b} \dot{\theta}\left(d_{1} \sin \theta+d_{2} \cos \theta\right) \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\boldsymbol{B}=\left[\begin{array}{ccc}
\cos \theta+\sin \theta & \sin \theta-\cos \theta & -l \sqrt{2} \sin (\pi / 4+\alpha) \\
\cos \theta-\sin \theta & \sin \theta+\cos \theta & -l \sqrt{2} \sin (\pi / 4+\alpha) \\
-\cos \theta-\sin \theta & -\sin \theta+\cos \theta & -l \sqrt{2} \sin (\pi / 4+\alpha) \\
-\cos \theta+\sin \theta & -\sin \theta-\cos \theta & -l \sqrt{2} \sin (\pi / 4+\alpha)
\end{array}\right]
$$

MATLAB/Simulink Model Discussion

In simulating the mecanum-wheeled vehicle base, the torques applied to each wheel are the inputs, while the state variables $\boldsymbol{q}=\left[\begin{array}{lll}x_{I} & y_{I} & \theta\end{array}\right]^{\mathrm{T}}$ are the outputs (referred to as x, y, and theta in the block diagrams that follow). Solving Equation (2) for $\ddot{\boldsymbol{q}}$ provides a convenient means for modeling in Simulink:

$$
\begin{equation*}
\ddot{\boldsymbol{q}}=\boldsymbol{M}^{-1}\left[\frac{1}{r} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{\tau}-\boldsymbol{C} \dot{\boldsymbol{q}}-\boldsymbol{B}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{f}\right] \tag{3}
\end{equation*}
$$

After the integrator blocks act on each state variable, subsystems are used to build up the matrices $\boldsymbol{M}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{S}. These signals are then combined together into the "right-hand side" of Equation (3) before being demuxed and connected back into the integrator blocks. Subsystem Phidot is used to calculate $\dot{\varphi}$ from Equation (1) so that $\operatorname{sgn}\left(\dot{\varphi}_{1}\right)$ can be plugged into $S . \varphi$ is also calculated and sent out to the workspace to be used as position data for the rotating wheels. Finally, subsystem Theta shifting translates θ into the range $0^{\circ}<\theta \leq 360^{\circ}$ for convenient use by the Solidworks external design table. The same shift was done in the MATLAB script file for each wheel's angular position.

Here is the script file used to define parameters and run the simulation:

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% mecanumScript2.m
% This script is run together with mecanumSim2.slx
clear all;
% Constant parameters
mw = 0.59; % mass of wheel (kg)
Iw = 0.001286; % moment of inertia for wheel (kg.m^2)
mb = 9.072; }\quad\mathrm{ % mass of platform (kg) (est 20 lbs)
Ib = 2.36; % moment of inertia for platform through CM = center
r = 0.06602; % radius of wheel (m)
a = 0.237; % half of axle width (width) (m)
b = 0.25; % half of axle spacing (length) (m)
l = (a^2+b^2)^0.5; % distance from geometric center to wheel (m)
alpha = atan(b/a); % (rad)
d1 = 0; % x-offset of CM from geometric center (m)
d2 = 0; % y-offset of CM from geometric center (m)
% Wheel contact friction forces
% Assume CM coincides with geometric center
```

```
% then fi = f
mu = 0.25; % Coefficient of friction
g = 9.80; % Accel. due to gravity (m/s^2)
f = 0.25* (mb + 4*mw)*g*mu; % Force (N)
% Mass matrix, constant terms
% M13 = M31 and M23 = M32 include state variable theta (not constant)
M11 = mb + 4*(mw + Iw/r^2);
M22 = M11;
M12 = 0;
M21 = 0;
M33 = mb*(d1^2 + d2^2) + Ib + 8*(mw + Iw/r^2)*l^2*(sin(pi/4+alpha))^2;
% Run simulation
sim('mecanumSim2.slx');
% Shift wheel angles into 0 < phi < 360
phi1 = rem(phi1,360);
for index = 1:size(phil)
    if phil(index) < 0
        phil(index) = phil(index) + 360;
    end
end
phi2 = rem(phi2,360);
for index = 1:size(phi2)
    if phi2(index) < 0
        phi2(index) = phi2(index) + 360;
    end
end
phi3 = rem(phi3,360);
for index = 1:size(phi3)
    if phi3(index) < 0
        phi3(index) = phi3(index) + 360;
    end
end
phi4 = rem(phi4,360);
for index = 1:size(phi4)
    if phi4(index) < 0
        phi4(index) = phi4(index) + 360;
    end
end
figure;
plot(x,y,'LineWidth',2);
title('25 second simulation');
xlabel('X_I (m)');
ylabel('Y I (m)');
xlim([0 5]);
ylim([0 3]);
axis square;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```


Scenarios and MATLAB Plots

After a shorter test animation (Animation 1), a second longer animation (Animation 2) was created to show the main modes of operation, i.e. translation forward/backward, left/right, diagonal, as well as rotation in place. Table 2 shows the sign of each wheel's rotation (or applied torque) needed to achieve the desired motion. Translation forward is taken as north while translation right is taken as east in the robot frame of reference.

Figure 5. Example of rightward (eastward) translation. Mecanum wheel images from vexrobotics.com.
Table 2. Some possible modes of operation for the 4-mecanum-wheeled vehicle base. Wheel rotation and/or torque are defined positively for CW motion looking outward from the vehicle base. $0=$ at rest (no torque).

Direction	Wheel 1	Wheel 2	Wheel 3	Wheel 4
N	-	+	+	-
S	+	-	-	+
E	+	+	-	-
W	-	-	+	+
NE	0	+	0	-
NW	-	-	0	0
SW	+	-	-	+
SE	+	+	+	-
CW rotation	-		+	

Figure 6 shows the input torques in red and the output variables in blue for the longer 25 second simulation and animation (Animation 2). The input torques were defined as piecewise linear signals using a Signal Builder block in Simulink. Because the model is open-loop, meaning there is no control feedback, the input signals were built using trial-and-error in order to produce the desired output vehicle motion. It was found that dropping the torques to zero for about 0.3-0.4s allowed the vehicle to stop before beginning the next leg. Figure 7 shows the corresponding output positions ($x_{\mathrm{I}}, y_{\mathrm{I}}$) for the 25 second simulation.

Figure 6. Input and output signals for Animation 2

Figure 7. Output vehicle positions for Animation 2

References

[1] L.-C. Lin and H.-Y. Shih, "Modeling and Adaptive Control of an Omni-MecanumWheeled Robot," Intelligent Control and Automation, 2013, 4, 166-179.
[2] S. Bruins, "Mecanum Wheel," https://grabcad.com/library/mecanum-wheel, accessed 2014-12-13.

