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Abstract 

Mecanum wheels offer a means to implement omni-directional translational motion in a vehicle 

platform. As the wheel rotates, rollers around its circumference create a force directed at an 

angle relative to the plane of rotation. Various combinations of wheel rotational velocities can 

provide a net force in any direction. This provides enhanced maneuverability in close quarters, 

but is often limited to smoother surfaces as the wheels require many moving rollers that can 

become easily obstructed by debris. Applications of this model run from small hobby kits up to 

heavy duty industrial vehicles. This project presents the simulation of a typical four mecanum-

wheeled vehicle platform using MATLAB and Simulink. All modes of vehicle motion are 

simulated and animated using frame-by-frame capture of a 3D vehicle model in Solidworks. 

 

System Equations 

The system equations presented here are the work of Lin & Shih [1], with modifications as 

indicated. 

 

Mecanum Wheel Parameters 

Each wheel is mounted on a vehicle chassis with a local robot frame of reference {R}: XRYRZR 

with the origin at the geometric center G and the wheel’s center at A. 

 

The key parameters for each wheel are 

 the angle of GA relative to the XR 

axis,  the angle of the wheel’s axle 

relative to GA, and  the angle of the 

rollers’ axles relative to the wheel’s 

plane of rotation. Note that these 

parameters vary for each wheel on the 

vehicle. 

 

The wheel’s angular velocity 𝜑̇ is 

defined positively for clockwise (CW) 

rotation looking outward from the 

vehicle base. 

 

Vehicle Base Configuration 

Figure 2 shows the vehicle base as viewed from above. The rollers shown are those touching the 

ground on the bottom of the wheel, which form a diamond pattern. When viewing an actual 

mecanum-wheeled vehicle from above as in Figure 3, the visible rollers on top of the wheel form 

an “X” shape. While the wheel parameters are in the local robot frame {R}, the inertial 

laboratory frame {I}: XIYIYI will provide the final output coordinates of the system. 2a is the 

vehicle’s width from wheel center to wheel center, while 2b is similarly the vehicle’s length. l is 

the distance from the geometric center G to the wheel center A. 

  

 
 

Figure 1. Parameters of a mecanum wheel [1] 



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2. Vehicle base configuration as viewed from above. Rollers shown are those that touch the ground. [1] 

 

 
Figure 3. 4WD 100mm Mecanum Wheel Learning Kit available from nexusrobot.com. Note the typical “X” 

shape formed by the rollers visible on the top of the wheels. 

 

The wheel parameters used in this project are given in Table 1. It appears that Lin & Shih chose 

i values corresponding to a configuration where the rollers contacting the floor make an “X” 

pattern, reversed from the typical configuration. When their equations were simulated directly, 

the vehicle’s translation back and forth along the XI axis was reversed from what was expected. 

In order to get sensible behavior from the model, the signs of the i values needed to be adjusted. 

The model implemented in this project uses the typical arrangement, which means the sign of 

each i is opposite of that given by Lin & Shih. 
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Table 1. Mecanum Wheel Parameter Values (i signs reversed, compared to Lin & Shih) 

Wheel i i i 

1 tan−1(𝑏/𝑎) − tan−1(𝑏/𝑎) −(𝜋/2 + 𝜋/4) 

2 𝜋 − tan−1(𝑏/𝑎) tan−1(𝑏/𝑎) (𝜋/2 + 𝜋/4) 

3 𝜋 + tan−1(𝑏/𝑎) − tan−1(𝑏/𝑎) −(𝜋/2 + 𝜋/4) 

4 2𝜋 − tan−1(𝑏/𝑎) tan−1(𝑏/𝑎) (𝜋/2 + 𝜋/4) 

 

System Coordinates and Inputs 

Consider each mecanum wheel with mass mwi = mw and moment of inertia Iwi = Iw. Also, the 

vehicle base has mass mb and moment of inertia Ib about the ZR’ axis. Figure 4 shows the system 

state variables 𝒒 = [𝑥𝐼 𝑦𝐼 𝜃]T in inertial laboratory frame {I} and input torques 𝝉 =
[𝜏1 𝜏2 𝜏3 𝜏4 ]T acting on each wheel. Torques are defined positively for CW torques 

looking outward from the vehicle base. In general, the vehicle base should be well balanced with 

the center of mass near the geometric center G. However, the model is generalized for bases 

where the center of mass G’ is offset from G by distances d1 and d2.  The contact friction forces 

between each mecanum wheel and the floor are 𝒇 = [𝑓1 𝑓2 𝑓3 𝑓4 ]
T. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. System coordinates with input torques defined positively for clockwise torques looking outward 

from the vehicle base 
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Equations 

The derivation of the system equations is beyond the scope of this project to show. Lin & Shih 

analyze the kinematics of the robot base assuming no wheel slippage parallel to the roller axes. 

The inverse kinematic equations are given as: 

 

[

𝜑1̇

𝜑2̇

𝜑3̇

𝜑4̇

] = −(
√2

𝑟
)

[
 
 
 
 −√2 2⁄ √2 2⁄ 𝑙 sin(𝜋 4⁄ + 𝛼)

−√2 2⁄ −√2 2⁄ 𝑙 sin(𝜋 4⁄ + 𝛼)

√2 2⁄ −√2 2⁄ 𝑙 sin(𝜋 4⁄ + 𝛼)

√2 2⁄ √2 2⁄ 𝑙 sin(𝜋 4⁄ + 𝛼)]
 
 
 
 

[
cos 𝜃 sin 𝜃 0

− sin 𝜃 cos 𝜃 0
0 0 1

] [

𝑥𝐼̇

𝑦𝐼̇

𝜃̇

] (1) 

 

where 𝛼 = tan−1(𝑏/𝑎). These will be used to find the direction, or sign, of each wheel’s rotation 

during the simulation. Note that Equation (1) is modified from Lin & Shih due to the reversed 

+/– signs of i. 

 

The dynamics are then analyzed using Lagrange’s equations. Final system equations are as 

follows (matrices B and M modified from Lin & Shih): 

𝑴(𝒒)𝒒̈ + 𝑪(𝒒, 𝒒̇)𝒒̇ + 𝑩T𝑺𝒇 =
1

𝑟
𝑩T𝝉 (2) 

where 

𝒒 = [𝑥𝐼 𝑦𝐼 𝜃]T 
 

𝝉 = [𝜏1 𝜏2 𝜏3 𝜏4 ]T 

 

𝒇 = [𝑓1 𝑓2 𝑓3 𝑓4 ]
T 

 

𝑺 = diag[ sgn(φ1̇) sgn(φ2̇) sgn(φ3̇) sgn(φ4̇) ] 
 

𝑴 = [𝑚𝑖𝑗]3×3
 

𝑚11 = 𝑚22 = 𝑚𝑏 + 4(𝑚𝑤 +
𝐼𝑤
𝑟2

) 

𝑚12 = 𝑚21 = 0 

𝑚13 = 𝑚31 = 𝑚𝑏(𝑑1 sin 𝜃 + 𝑑2 cos 𝜃) 

𝑚23 = 𝑚32 = 𝑚𝑏(−𝑑1 cos 𝜃 + 𝑑2 sin 𝜃) 

𝑚33 = 𝑚𝑏(𝑑1
2 + 𝑑2

2) + 𝐼𝑏 + 8(𝑚𝑤 +
1

𝑟2
) 𝑙2 sin2(𝜋/4 + 𝛼) 

 

𝑪 = [
0 0 𝑚𝑏𝜃̇(𝑑1 cos 𝜃 − 𝑑2 sin 𝜃)

0 0 𝑚𝑏𝜃̇(𝑑1 sin 𝜃 + 𝑑2 cos 𝜃)
0 0 0

] 

 



𝑩 =

[
 
 
 
 cos 𝜃 +sin 𝜃 sin 𝜃 −cos 𝜃 −𝑙√2 sin(𝜋/4 + 𝛼)

cos 𝜃 −sin 𝜃 sin 𝜃 +cos 𝜃 −𝑙√2 sin(𝜋/4 + 𝛼)

−cos 𝜃 −sin 𝜃 −sin 𝜃 +cos 𝜃 −𝑙√2 sin(𝜋/4 + 𝛼)

−cos 𝜃 +sin 𝜃 − sin 𝜃 −cos 𝜃 −𝑙√2 sin(𝜋/4 + 𝛼)]
 
 
 
 

 

 

MATLAB/Simulink Model Discussion 

In simulating the mecanum-wheeled vehicle base, the torques applied to each wheel are the 

inputs, while the state variables 𝒒 = [𝑥𝐼 𝑦𝐼 𝜃]T  are the outputs (referred to as x, y, and theta 

in the block diagrams that follow). Solving Equation (2) for 𝒒̈ provides a convenient means for 

modeling in Simulink: 

 

𝒒̈ = 𝑴−1 [
1

𝑟
𝑩T𝝉 − 𝑪𝒒̇ − 𝑩T𝑺𝒇] (3) 

 

After the integrator blocks act on each state variable, subsystems are used to build up the 

matrices M, B, C and S. These signals are then combined together into the “right-hand side” of 

Equation (3) before being demuxed and connected back into the integrator blocks. Subsystem 

Phidot is used to calculate 𝜑̇ from Equation (1) so that sgn(φi̇ ) can be plugged into S. 𝜑 is also 

calculated and sent out to the workspace to be used as position data for the rotating wheels. 

Finally, subsystem Theta shifting translates  into the range 0° < 𝜃 ≤ 360° for convenient use 

by the Solidworks external design table. The same shift was done in the MATLAB script file for 

each wheel’s angular position. 

 

Here is the script file used to define parameters and run the simulation: 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% mecanumScript2.m 
% This script is run together with mecanumSim2.slx 

  
clear all; 

  
% Constant parameters 
mw = 0.59;          % mass of wheel (kg) 
Iw = 0.001286;      % moment of inertia for wheel (kg.m^2)  
                    % Box dimensions are .6 m by .4 m 
mb = 9.072;         % mass of platform (kg) (est 20 lbs) 
Ib = 2.36;          % moment of inertia for platform through CM = center  

     % (kg.m^2) 
r = 0.06602;        % radius of wheel (m) 
a = 0.237;          % half of axle width (width) (m) 
b = 0.25;           % half of axle spacing (length) (m) 
l = (a^2+b^2)^0.5;  % distance from geometric center to wheel (m) 
alpha = atan(b/a);  % (rad) 
d1 = 0;             % x-offset of CM from geometric center (m) 
d2 = 0;             % y-offset of CM from geometric center (m) 

  
% Wheel contact friction forces 
% Assume CM coincides with geometric center 



% then fi = f 
mu = 0.25;          % Coefficient of friction 
g = 9.80;           % Accel. due to gravity (m/s^2) 
f = 0.25*(mb + 4*mw)*g*mu;  % Force (N) 

  
% Mass matrix, constant terms 
% M13 = M31 and M23 = M32 include state variable theta (not constant) 
M11 = mb + 4*(mw + Iw/r^2); 
M22 = M11; 
M12 = 0; 
M21 = 0; 
M33 = mb*(d1^2 + d2^2) + Ib + 8*(mw + Iw/r^2)*l^2*(sin(pi/4+alpha))^2; 

  
% Run simulation 
sim('mecanumSim2.slx'); 

  
% Shift wheel angles into 0 < phi < 360 
phi1 = rem(phi1,360); 
for index = 1:size(phi1) 
    if phi1(index) < 0 
        phi1(index) = phi1(index) + 360; 
    end 
end 

  
phi2 = rem(phi2,360); 
for index = 1:size(phi2) 
    if phi2(index) < 0 
        phi2(index) = phi2(index) + 360; 
    end 
end 

  
phi3 = rem(phi3,360); 
for index = 1:size(phi3) 
    if phi3(index) < 0 
        phi3(index) = phi3(index) + 360; 
    end 
end 

  
phi4 = rem(phi4,360); 
for index = 1:size(phi4) 
    if phi4(index) < 0 
        phi4(index) = phi4(index) + 360; 
    end 
end 

  
figure; 
plot(x,y,'LineWidth',2); 
title('25 second simulation'); 
xlabel('X_I (m)'); 
ylabel('Y_I (m)'); 
xlim([0 5]); 
ylim([0 3]); 
axis square; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 



Scenarios and MATLAB Plots 

After a shorter test animation (Animation 1), a second longer animation (Animation 2) was 

created to show the main modes of operation, i.e. translation forward/backward, left/right, 

diagonal, as well as rotation in place. Table 2 shows the sign of each wheel’s rotation (or applied 

torque) needed to achieve the desired motion. Translation forward is taken as north while 

translation right is taken as east in the robot frame of reference. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Example of rightward (eastward) translation. Mecanum wheel images from vexrobotics.com. 

 

Table 2. Some possible modes of operation for the 4-mecanum-wheeled vehicle base. Wheel rotation and/or 

torque are defined positively for CW motion looking outward from the vehicle base. 0 = at rest (no torque). 

Direction Wheel 1 Wheel 2 Wheel 3 Wheel 4 

N – + + – 

S + – – + 

E + + – – 

W – – + + 

NE 0 + 0 – 

NW – 0 + 0 

SW 0 – 0 + 

SE + 0 – 0 

CW rotation – – – – 

CCW rotation + + + + 
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Figure 6 shows the input torques in red and the output variables in blue for the longer 25 second 

simulation and animation (Animation 2). The input torques were defined as piecewise linear 

signals using a Signal Builder block in Simulink. Because the model is open-loop, meaning there 

is no control feedback, the input signals were built using trial-and-error in order to produce the 

desired output vehicle motion. It was found that dropping the torques to zero for about 0.3-0.4s 

allowed the vehicle to stop before beginning the next leg. Figure 7 shows the corresponding 

output positions (xI, yI) for the 25 second simulation. 

 

 
Figure 6. Input and output signals for Animation 2 

 



 
Figure 7. Output vehicle positions for Animation 2 
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